We approach the problem in two stages. At first, the unobserved character (target) is generated from an observed character (source) being modified. We propose two different neural network architectures - (a) FANnet to achieve structural consistency with source font and (b) Colornet to preserve source color. Next, we replace the source character with the generated character maintaining both geometric and visual consistency with neighboring characters. Our method works as a unified platform for modifying text in images. We present the effectiveness of our method on COCO-Text and ICDAR datasets both qualitatively and quantitatively.

Don't forget to tag @prasunroy in your comment, otherwise they may not be notified.

Research Engineer at Indian Statistical Institute, working in the field of Computer Vision & Machine Learning. 😃
Share this project
Top collections